1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
// Copyright 2013-2017 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! Utilities for random number generation //! //! The key functions are `random()` and `Rng::gen()`. These are polymorphic and //! so can be used to generate any type that implements `Rand`. Type inference //! means that often a simple call to `rand::random()` or `rng.gen()` will //! suffice, but sometimes an annotation is required, e.g. //! `rand::random::<f64>()`. //! //! See the `distributions` submodule for sampling random numbers from //! distributions like normal and exponential. //! //! # Usage //! //! This crate is [on crates.io](https://crates.io/crates/rand) and can be //! used by adding `rand` to the dependencies in your project's `Cargo.toml`. //! //! ```toml //! [dependencies] //! rand = "0.3" //! ``` //! //! and this to your crate root: //! //! ```rust //! extern crate rand; //! ``` //! //! # Thread-local RNG //! //! There is built-in support for a RNG associated with each thread stored //! in thread-local storage. This RNG can be accessed via `thread_rng`, or //! used implicitly via `random`. This RNG is normally randomly seeded //! from an operating-system source of randomness, e.g. `/dev/urandom` on //! Unix systems, and will automatically reseed itself from this source //! after generating 32 KiB of random data. //! //! # Cryptographic security //! //! An application that requires an entropy source for cryptographic purposes //! must use `OsRng`, which reads randomness from the source that the operating //! system provides (e.g. `/dev/urandom` on Unixes or `CryptGenRandom()` on //! Windows). //! The other random number generators provided by this module are not suitable //! for such purposes. //! //! *Note*: many Unix systems provide `/dev/random` as well as `/dev/urandom`. //! This module uses `/dev/urandom` for the following reasons: //! //! - On Linux, `/dev/random` may block if entropy pool is empty; //! `/dev/urandom` will not block. This does not mean that `/dev/random` //! provides better output than `/dev/urandom`; the kernel internally runs a //! cryptographically secure pseudorandom number generator (CSPRNG) based on //! entropy pool for random number generation, so the "quality" of //! `/dev/random` is not better than `/dev/urandom` in most cases. However, //! this means that `/dev/urandom` can yield somewhat predictable randomness //! if the entropy pool is very small, such as immediately after first //! booting. Linux 3.17 added the `getrandom(2)` system call which solves //! the issue: it blocks if entropy pool is not initialized yet, but it does //! not block once initialized. `OsRng` tries to use `getrandom(2)` if //! available, and use `/dev/urandom` fallback if not. If an application //! does not have `getrandom` and likely to be run soon after first booting, //! or on a system with very few entropy sources, one should consider using //! `/dev/random` via `ReadRng`. //! - On some systems (e.g. FreeBSD, OpenBSD and Mac OS X) there is no //! difference between the two sources. (Also note that, on some systems //! e.g. FreeBSD, both `/dev/random` and `/dev/urandom` may block once if //! the CSPRNG has not seeded yet.) //! //! # Examples //! //! ```rust //! use rand::Rng; //! //! let mut rng = rand::thread_rng(); //! if rng.gen() { // random bool //! println!("i32: {}, u32: {}", rng.gen::<i32>(), rng.gen::<u32>()) //! } //! ``` //! //! ```rust //! let tuple = rand::random::<(f64, char)>(); //! println!("{:?}", tuple) //! ``` //! //! ## Monte Carlo estimation of π //! //! For this example, imagine we have a square with sides of length 2 and a unit //! circle, both centered at the origin. Since the area of a unit circle is π, //! we have: //! //! ```text //! (area of unit circle) / (area of square) = π / 4 //! ``` //! //! So if we sample many points randomly from the square, roughly π / 4 of them //! should be inside the circle. //! //! We can use the above fact to estimate the value of π: pick many points in //! the square at random, calculate the fraction that fall within the circle, //! and multiply this fraction by 4. //! //! ``` //! use rand::distributions::{IndependentSample, Range}; //! //! fn main() { //! let between = Range::new(-1f64, 1.); //! let mut rng = rand::thread_rng(); //! //! let total = 1_000_000; //! let mut in_circle = 0; //! //! for _ in 0..total { //! let a = between.ind_sample(&mut rng); //! let b = between.ind_sample(&mut rng); //! if a*a + b*b <= 1. { //! in_circle += 1; //! } //! } //! //! // prints something close to 3.14159... //! println!("{}", 4. * (in_circle as f64) / (total as f64)); //! } //! ``` //! //! ## Monty Hall Problem //! //! This is a simulation of the [Monty Hall Problem][]: //! //! > Suppose you're on a game show, and you're given the choice of three doors: //! > Behind one door is a car; behind the others, goats. You pick a door, say //! > No. 1, and the host, who knows what's behind the doors, opens another //! > door, say No. 3, which has a goat. He then says to you, "Do you want to //! > pick door No. 2?" Is it to your advantage to switch your choice? //! //! The rather unintuitive answer is that you will have a 2/3 chance of winning //! if you switch and a 1/3 chance of winning if you don't, so it's better to //! switch. //! //! This program will simulate the game show and with large enough simulation //! steps it will indeed confirm that it is better to switch. //! //! [Monty Hall Problem]: http://en.wikipedia.org/wiki/Monty_Hall_problem //! //! ``` //! use rand::Rng; //! use rand::distributions::{IndependentSample, Range}; //! //! struct SimulationResult { //! win: bool, //! switch: bool, //! } //! //! // Run a single simulation of the Monty Hall problem. //! fn simulate<R: Rng>(random_door: &Range<u32>, rng: &mut R) //! -> SimulationResult { //! let car = random_door.ind_sample(rng); //! //! // This is our initial choice //! let mut choice = random_door.ind_sample(rng); //! //! // The game host opens a door //! let open = game_host_open(car, choice, rng); //! //! // Shall we switch? //! let switch = rng.gen(); //! if switch { //! choice = switch_door(choice, open); //! } //! //! SimulationResult { win: choice == car, switch: switch } //! } //! //! // Returns the door the game host opens given our choice and knowledge of //! // where the car is. The game host will never open the door with the car. //! fn game_host_open<R: Rng>(car: u32, choice: u32, rng: &mut R) -> u32 { //! let choices = free_doors(&[car, choice]); //! rand::seq::sample_slice(rng, &choices, 1)[0] //! } //! //! // Returns the door we switch to, given our current choice and //! // the open door. There will only be one valid door. //! fn switch_door(choice: u32, open: u32) -> u32 { //! free_doors(&[choice, open])[0] //! } //! //! fn free_doors(blocked: &[u32]) -> Vec<u32> { //! (0..3).filter(|x| !blocked.contains(x)).collect() //! } //! //! fn main() { //! // The estimation will be more accurate with more simulations //! let num_simulations = 10000; //! //! let mut rng = rand::thread_rng(); //! let random_door = Range::new(0, 3); //! //! let (mut switch_wins, mut switch_losses) = (0, 0); //! let (mut keep_wins, mut keep_losses) = (0, 0); //! //! println!("Running {} simulations...", num_simulations); //! for _ in 0..num_simulations { //! let result = simulate(&random_door, &mut rng); //! //! match (result.win, result.switch) { //! (true, true) => switch_wins += 1, //! (true, false) => keep_wins += 1, //! (false, true) => switch_losses += 1, //! (false, false) => keep_losses += 1, //! } //! } //! //! let total_switches = switch_wins + switch_losses; //! let total_keeps = keep_wins + keep_losses; //! //! println!("Switched door {} times with {} wins and {} losses", //! total_switches, switch_wins, switch_losses); //! //! println!("Kept our choice {} times with {} wins and {} losses", //! total_keeps, keep_wins, keep_losses); //! //! // With a large number of simulations, the values should converge to //! // 0.667 and 0.333 respectively. //! println!("Estimated chance to win if we switch: {}", //! switch_wins as f32 / total_switches as f32); //! println!("Estimated chance to win if we don't: {}", //! keep_wins as f32 / total_keeps as f32); //! } //! ``` #![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png", html_favicon_url = "https://www.rust-lang.org/favicon.ico", html_root_url = "https://docs.rs/rand/0.3")] #![deny(missing_debug_implementations)] #![cfg_attr(not(feature="std"), no_std)] #![cfg_attr(all(feature="alloc", not(feature="std")), feature(alloc))] #![cfg_attr(feature = "i128_support", feature(i128_type, i128))] #[cfg(feature="std")] extern crate std as core; #[cfg(all(feature = "alloc", not(feature="std")))] extern crate alloc; #[cfg(test)] #[macro_use] extern crate log; use core::marker; use core::mem; #[cfg(feature="std")] use std::cell::RefCell; #[cfg(feature="std")] use std::io; #[cfg(feature="std")] use std::rc::Rc; pub use jitter::JitterRng; #[cfg(feature="std")] pub use os::OsRng; pub use isaac::{IsaacRng, Isaac64Rng}; pub use chacha::ChaChaRng; #[cfg(target_pointer_width = "32")] use prng::IsaacRng as IsaacWordRng; #[cfg(target_pointer_width = "64")] use prng::Isaac64Rng as IsaacWordRng; use distributions::{Range, IndependentSample}; use distributions::range::SampleRange; pub use prng::XorShiftRng; pub mod distributions; pub mod reseeding; mod rand_impls; pub mod jitter; #[cfg(feature="std")] pub mod os; #[cfg(feature="std")] pub mod read; #[cfg(any(feature="std", feature = "alloc"))] pub mod seq; mod prng; // These tiny modules are here to avoid API breakage, probably only temporarily pub mod chacha { //! The ChaCha random number generator. pub use prng::ChaChaRng; } pub mod isaac { //! The ISAAC random number generator. pub use prng::{IsaacRng, Isaac64Rng}; } /// A type that can be randomly generated using an `Rng`. /// /// ## Built-in Implementations /// /// This crate implements `Rand` for various primitive types. Assuming the /// provided `Rng` is well-behaved, these implementations generate values with /// the following ranges and distributions: /// /// * Integers (`i32`, `u32`, `isize`, `usize`, etc.): Uniformly distributed /// over all values of the type. /// * `char`: Uniformly distributed over all Unicode scalar values, i.e. all /// code points in the range `0...0x10_FFFF`, except for the range /// `0xD800...0xDFFF` (the surrogate code points). This includes /// unassigned/reserved code points. /// * `bool`: Generates `false` or `true`, each with probability 0.5. /// * Floating point types (`f32` and `f64`): Uniformly distributed in the /// half-open range `[0, 1)`. (The [`Open01`], [`Closed01`], [`Exp1`], and /// [`StandardNormal`] wrapper types produce floating point numbers with /// alternative ranges or distributions.) /// /// [`Open01`]: struct.Open01.html /// [`Closed01`]: struct.Closed01.html /// [`Exp1`]: distributions/exponential/struct.Exp1.html /// [`StandardNormal`]: distributions/normal/struct.StandardNormal.html /// /// The following aggregate types also implement `Rand` as long as their /// component types implement it: /// /// * Tuples and arrays: Each element of the tuple or array is generated /// independently, using its own `Rand` implementation. /// * `Option<T>`: Returns `None` with probability 0.5; otherwise generates a /// random `T` and returns `Some(T)`. pub trait Rand : Sized { /// Generates a random instance of this type using the specified source of /// randomness. fn rand<R: Rng>(rng: &mut R) -> Self; } /// A random number generator. pub trait Rng { /// Return the next random u32. /// /// This rarely needs to be called directly, prefer `r.gen()` to /// `r.next_u32()`. // FIXME #rust-lang/rfcs#628: Should be implemented in terms of next_u64 fn next_u32(&mut self) -> u32; /// Return the next random u64. /// /// By default this is implemented in terms of `next_u32`. An /// implementation of this trait must provide at least one of /// these two methods. Similarly to `next_u32`, this rarely needs /// to be called directly, prefer `r.gen()` to `r.next_u64()`. fn next_u64(&mut self) -> u64 { ((self.next_u32() as u64) << 32) | (self.next_u32() as u64) } /// Return the next random f32 selected from the half-open /// interval `[0, 1)`. /// /// This uses a technique described by Saito and Matsumoto at /// MCQMC'08. Given that the IEEE floating point numbers are /// uniformly distributed over [1,2), we generate a number in /// this range and then offset it onto the range [0,1). Our /// choice of bits (masking v. shifting) is arbitrary and /// should be immaterial for high quality generators. For low /// quality generators (ex. LCG), prefer bitshifting due to /// correlation between sequential low order bits. /// /// See: /// A PRNG specialized in double precision floating point numbers using /// an affine transition /// /// * <http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/dSFMT.pdf> /// * <http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/dSFMT-slide-e.pdf> /// /// By default this is implemented in terms of `next_u32`, but a /// random number generator which can generate numbers satisfying /// the requirements directly can overload this for performance. /// It is required that the return value lies in `[0, 1)`. /// /// See `Closed01` for the closed interval `[0,1]`, and /// `Open01` for the open interval `(0,1)`. fn next_f32(&mut self) -> f32 { const UPPER_MASK: u32 = 0x3F800000; const LOWER_MASK: u32 = 0x7FFFFF; let tmp = UPPER_MASK | (self.next_u32() & LOWER_MASK); let result: f32 = unsafe { mem::transmute(tmp) }; result - 1.0 } /// Return the next random f64 selected from the half-open /// interval `[0, 1)`. /// /// By default this is implemented in terms of `next_u64`, but a /// random number generator which can generate numbers satisfying /// the requirements directly can overload this for performance. /// It is required that the return value lies in `[0, 1)`. /// /// See `Closed01` for the closed interval `[0,1]`, and /// `Open01` for the open interval `(0,1)`. fn next_f64(&mut self) -> f64 { const UPPER_MASK: u64 = 0x3FF0000000000000; const LOWER_MASK: u64 = 0xFFFFFFFFFFFFF; let tmp = UPPER_MASK | (self.next_u64() & LOWER_MASK); let result: f64 = unsafe { mem::transmute(tmp) }; result - 1.0 } /// Fill `dest` with random data. /// /// This has a default implementation in terms of `next_u64` and /// `next_u32`, but should be overridden by implementations that /// offer a more efficient solution than just calling those /// methods repeatedly. /// /// This method does *not* have a requirement to bear any fixed /// relationship to the other methods, for example, it does *not* /// have to result in the same output as progressively filling /// `dest` with `self.gen::<u8>()`, and any such behaviour should /// not be relied upon. /// /// This method should guarantee that `dest` is entirely filled /// with new data, and may panic if this is impossible /// (e.g. reading past the end of a file that is being used as the /// source of randomness). /// /// # Example /// /// ```rust /// use rand::{thread_rng, Rng}; /// /// let mut v = [0u8; 13579]; /// thread_rng().fill_bytes(&mut v); /// println!("{:?}", &v[..]); /// ``` fn fill_bytes(&mut self, dest: &mut [u8]) { // this could, in theory, be done by transmuting dest to a // [u64], but this is (1) likely to be undefined behaviour for // LLVM, (2) has to be very careful about alignment concerns, // (3) adds more `unsafe` that needs to be checked, (4) // probably doesn't give much performance gain if // optimisations are on. let mut count = 0; let mut num = 0; for byte in dest.iter_mut() { if count == 0 { // we could micro-optimise here by generating a u32 if // we only need a few more bytes to fill the vector // (i.e. at most 4). num = self.next_u64(); count = 8; } *byte = (num & 0xff) as u8; num >>= 8; count -= 1; } } /// Return a random value of a `Rand` type. /// /// # Example /// /// ```rust /// use rand::{thread_rng, Rng}; /// /// let mut rng = thread_rng(); /// let x: u32 = rng.gen(); /// println!("{}", x); /// println!("{:?}", rng.gen::<(f64, bool)>()); /// ``` #[inline(always)] fn gen<T: Rand>(&mut self) -> T where Self: Sized { Rand::rand(self) } /// Return an iterator that will yield an infinite number of randomly /// generated items. /// /// # Example /// /// ``` /// use rand::{thread_rng, Rng}; /// /// let mut rng = thread_rng(); /// let x = rng.gen_iter::<u32>().take(10).collect::<Vec<u32>>(); /// println!("{:?}", x); /// println!("{:?}", rng.gen_iter::<(f64, bool)>().take(5) /// .collect::<Vec<(f64, bool)>>()); /// ``` fn gen_iter<'a, T: Rand>(&'a mut self) -> Generator<'a, T, Self> where Self: Sized { Generator { rng: self, _marker: marker::PhantomData } } /// Generate a random value in the range [`low`, `high`). /// /// This is a convenience wrapper around /// `distributions::Range`. If this function will be called /// repeatedly with the same arguments, one should use `Range`, as /// that will amortize the computations that allow for perfect /// uniformity, as they only happen on initialization. /// /// # Panics /// /// Panics if `low >= high`. /// /// # Example /// /// ```rust /// use rand::{thread_rng, Rng}; /// /// let mut rng = thread_rng(); /// let n: u32 = rng.gen_range(0, 10); /// println!("{}", n); /// let m: f64 = rng.gen_range(-40.0f64, 1.3e5f64); /// println!("{}", m); /// ``` fn gen_range<T: PartialOrd + SampleRange>(&mut self, low: T, high: T) -> T where Self: Sized { assert!(low < high, "Rng.gen_range called with low >= high"); Range::new(low, high).ind_sample(self) } /// Return a bool with a 1 in n chance of true /// /// # Example /// /// ```rust /// use rand::{thread_rng, Rng}; /// /// let mut rng = thread_rng(); /// println!("{}", rng.gen_weighted_bool(3)); /// ``` fn gen_weighted_bool(&mut self, n: u32) -> bool where Self: Sized { n <= 1 || self.gen_range(0, n) == 0 } /// Return an iterator of random characters from the set A-Z,a-z,0-9. /// /// # Example /// /// ```rust /// use rand::{thread_rng, Rng}; /// /// let s: String = thread_rng().gen_ascii_chars().take(10).collect(); /// println!("{}", s); /// ``` fn gen_ascii_chars<'a>(&'a mut self) -> AsciiGenerator<'a, Self> where Self: Sized { AsciiGenerator { rng: self } } /// Return a random element from `values`. /// /// Return `None` if `values` is empty. /// /// # Example /// /// ``` /// use rand::{thread_rng, Rng}; /// /// let choices = [1, 2, 4, 8, 16, 32]; /// let mut rng = thread_rng(); /// println!("{:?}", rng.choose(&choices)); /// assert_eq!(rng.choose(&choices[..0]), None); /// ``` fn choose<'a, T>(&mut self, values: &'a [T]) -> Option<&'a T> where Self: Sized { if values.is_empty() { None } else { Some(&values[self.gen_range(0, values.len())]) } } /// Return a mutable pointer to a random element from `values`. /// /// Return `None` if `values` is empty. fn choose_mut<'a, T>(&mut self, values: &'a mut [T]) -> Option<&'a mut T> where Self: Sized { if values.is_empty() { None } else { let len = values.len(); Some(&mut values[self.gen_range(0, len)]) } } /// Shuffle a mutable slice in place. /// /// This applies Durstenfeld's algorithm for the [Fisher–Yates shuffle](https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm) /// which produces an unbiased permutation. /// /// # Example /// /// ```rust /// use rand::{thread_rng, Rng}; /// /// let mut rng = thread_rng(); /// let mut y = [1, 2, 3]; /// rng.shuffle(&mut y); /// println!("{:?}", y); /// rng.shuffle(&mut y); /// println!("{:?}", y); /// ``` fn shuffle<T>(&mut self, values: &mut [T]) where Self: Sized { let mut i = values.len(); while i >= 2 { // invariant: elements with index >= i have been locked in place. i -= 1; // lock element i in place. values.swap(i, self.gen_range(0, i + 1)); } } } impl<'a, R: ?Sized> Rng for &'a mut R where R: Rng { fn next_u32(&mut self) -> u32 { (**self).next_u32() } fn next_u64(&mut self) -> u64 { (**self).next_u64() } fn next_f32(&mut self) -> f32 { (**self).next_f32() } fn next_f64(&mut self) -> f64 { (**self).next_f64() } fn fill_bytes(&mut self, dest: &mut [u8]) { (**self).fill_bytes(dest) } } #[cfg(feature="std")] impl<R: ?Sized> Rng for Box<R> where R: Rng { fn next_u32(&mut self) -> u32 { (**self).next_u32() } fn next_u64(&mut self) -> u64 { (**self).next_u64() } fn next_f32(&mut self) -> f32 { (**self).next_f32() } fn next_f64(&mut self) -> f64 { (**self).next_f64() } fn fill_bytes(&mut self, dest: &mut [u8]) { (**self).fill_bytes(dest) } } /// Iterator which will generate a stream of random items. /// /// This iterator is created via the [`gen_iter`] method on [`Rng`]. /// /// [`gen_iter`]: trait.Rng.html#method.gen_iter /// [`Rng`]: trait.Rng.html #[derive(Debug)] pub struct Generator<'a, T, R:'a> { rng: &'a mut R, _marker: marker::PhantomData<fn() -> T>, } impl<'a, T: Rand, R: Rng> Iterator for Generator<'a, T, R> { type Item = T; fn next(&mut self) -> Option<T> { Some(self.rng.gen()) } } /// Iterator which will continuously generate random ascii characters. /// /// This iterator is created via the [`gen_ascii_chars`] method on [`Rng`]. /// /// [`gen_ascii_chars`]: trait.Rng.html#method.gen_ascii_chars /// [`Rng`]: trait.Rng.html #[derive(Debug)] pub struct AsciiGenerator<'a, R:'a> { rng: &'a mut R, } impl<'a, R: Rng> Iterator for AsciiGenerator<'a, R> { type Item = char; fn next(&mut self) -> Option<char> { const GEN_ASCII_STR_CHARSET: &'static [u8] = b"ABCDEFGHIJKLMNOPQRSTUVWXYZ\ abcdefghijklmnopqrstuvwxyz\ 0123456789"; Some(*self.rng.choose(GEN_ASCII_STR_CHARSET).unwrap() as char) } } /// A random number generator that can be explicitly seeded to produce /// the same stream of randomness multiple times. pub trait SeedableRng<Seed>: Rng { /// Reseed an RNG with the given seed. /// /// # Example /// /// ```rust /// use rand::{Rng, SeedableRng, StdRng}; /// /// let seed: &[_] = &[1, 2, 3, 4]; /// let mut rng: StdRng = SeedableRng::from_seed(seed); /// println!("{}", rng.gen::<f64>()); /// rng.reseed(&[5, 6, 7, 8]); /// println!("{}", rng.gen::<f64>()); /// ``` fn reseed(&mut self, Seed); /// Create a new RNG with the given seed. /// /// # Example /// /// ```rust /// use rand::{Rng, SeedableRng, StdRng}; /// /// let seed: &[_] = &[1, 2, 3, 4]; /// let mut rng: StdRng = SeedableRng::from_seed(seed); /// println!("{}", rng.gen::<f64>()); /// ``` fn from_seed(seed: Seed) -> Self; } /// A wrapper for generating floating point numbers uniformly in the /// open interval `(0,1)` (not including either endpoint). /// /// Use `Closed01` for the closed interval `[0,1]`, and the default /// `Rand` implementation for `f32` and `f64` for the half-open /// `[0,1)`. /// /// # Example /// ```rust /// use rand::{random, Open01}; /// /// let Open01(val) = random::<Open01<f32>>(); /// println!("f32 from (0,1): {}", val); /// ``` #[derive(Debug)] pub struct Open01<F>(pub F); /// A wrapper for generating floating point numbers uniformly in the /// closed interval `[0,1]` (including both endpoints). /// /// Use `Open01` for the closed interval `(0,1)`, and the default /// `Rand` implementation of `f32` and `f64` for the half-open /// `[0,1)`. /// /// # Example /// /// ```rust /// use rand::{random, Closed01}; /// /// let Closed01(val) = random::<Closed01<f32>>(); /// println!("f32 from [0,1]: {}", val); /// ``` #[derive(Debug)] pub struct Closed01<F>(pub F); /// The standard RNG. This is designed to be efficient on the current /// platform. #[derive(Copy, Clone, Debug)] pub struct StdRng { rng: IsaacWordRng, } impl StdRng { /// Create a randomly seeded instance of `StdRng`. /// /// This is a very expensive operation as it has to read /// randomness from the operating system and use this in an /// expensive seeding operation. If one is only generating a small /// number of random numbers, or doesn't need the utmost speed for /// generating each number, `thread_rng` and/or `random` may be more /// appropriate. /// /// Reading the randomness from the OS may fail, and any error is /// propagated via the `io::Result` return value. #[cfg(feature="std")] pub fn new() -> io::Result<StdRng> { match OsRng::new() { Ok(mut r) => Ok(StdRng { rng: r.gen() }), Err(e1) => { match JitterRng::new() { Ok(mut r) => Ok(StdRng { rng: r.gen() }), Err(_) => { Err(e1) } } } } } } impl Rng for StdRng { #[inline] fn next_u32(&mut self) -> u32 { self.rng.next_u32() } #[inline] fn next_u64(&mut self) -> u64 { self.rng.next_u64() } } impl<'a> SeedableRng<&'a [usize]> for StdRng { fn reseed(&mut self, seed: &'a [usize]) { // the internal RNG can just be seeded from the above // randomness. self.rng.reseed(unsafe {mem::transmute(seed)}) } fn from_seed(seed: &'a [usize]) -> StdRng { StdRng { rng: SeedableRng::from_seed(unsafe {mem::transmute(seed)}) } } } /// Create a weak random number generator with a default algorithm and seed. /// /// It returns the fastest `Rng` algorithm currently available in Rust without /// consideration for cryptography or security. If you require a specifically /// seeded `Rng` for consistency over time you should pick one algorithm and /// create the `Rng` yourself. /// /// This will seed the generator with randomness from thread_rng. #[cfg(feature="std")] pub fn weak_rng() -> XorShiftRng { thread_rng().gen() } /// Controls how the thread-local RNG is reseeded. #[cfg(feature="std")] #[derive(Debug)] struct ThreadRngReseeder; #[cfg(feature="std")] impl reseeding::Reseeder<StdRng> for ThreadRngReseeder { fn reseed(&mut self, rng: &mut StdRng) { match StdRng::new() { Ok(r) => *rng = r, Err(e) => panic!("No entropy available: {}", e), } } } #[cfg(feature="std")] const THREAD_RNG_RESEED_THRESHOLD: u64 = 32_768; #[cfg(feature="std")] type ThreadRngInner = reseeding::ReseedingRng<StdRng, ThreadRngReseeder>; /// The thread-local RNG. #[cfg(feature="std")] #[derive(Clone, Debug)] pub struct ThreadRng { rng: Rc<RefCell<ThreadRngInner>>, } /// Retrieve the lazily-initialized thread-local random number /// generator, seeded by the system. Intended to be used in method /// chaining style, e.g. `thread_rng().gen::<i32>()`. /// /// After generating a certain amount of randomness, the RNG will reseed itself /// from the operating system or, if the operating system RNG returns an error, /// a seed based on the current system time. /// /// The internal RNG used is platform and architecture dependent, even /// if the operating system random number generator is rigged to give /// the same sequence always. If absolute consistency is required, /// explicitly select an RNG, e.g. `IsaacRng` or `Isaac64Rng`. #[cfg(feature="std")] pub fn thread_rng() -> ThreadRng { // used to make space in TLS for a random number generator thread_local!(static THREAD_RNG_KEY: Rc<RefCell<ThreadRngInner>> = { let r = match StdRng::new() { Ok(r) => r, Err(e) => panic!("No entropy available: {}", e), }; let rng = reseeding::ReseedingRng::new(r, THREAD_RNG_RESEED_THRESHOLD, ThreadRngReseeder); Rc::new(RefCell::new(rng)) }); ThreadRng { rng: THREAD_RNG_KEY.with(|t| t.clone()) } } #[cfg(feature="std")] impl Rng for ThreadRng { fn next_u32(&mut self) -> u32 { self.rng.borrow_mut().next_u32() } fn next_u64(&mut self) -> u64 { self.rng.borrow_mut().next_u64() } #[inline] fn fill_bytes(&mut self, bytes: &mut [u8]) { self.rng.borrow_mut().fill_bytes(bytes) } } /// Generates a random value using the thread-local random number generator. /// /// `random()` can generate various types of random things, and so may require /// type hinting to generate the specific type you want. /// /// This function uses the thread local random number generator. This means /// that if you're calling `random()` in a loop, caching the generator can /// increase performance. An example is shown below. /// /// # Examples /// /// ``` /// let x = rand::random::<u8>(); /// println!("{}", x); /// /// let y = rand::random::<f64>(); /// println!("{}", y); /// /// if rand::random() { // generates a boolean /// println!("Better lucky than good!"); /// } /// ``` /// /// Caching the thread local random number generator: /// /// ``` /// use rand::Rng; /// /// let mut v = vec![1, 2, 3]; /// /// for x in v.iter_mut() { /// *x = rand::random() /// } /// /// // would be faster as /// /// let mut rng = rand::thread_rng(); /// /// for x in v.iter_mut() { /// *x = rng.gen(); /// } /// ``` #[cfg(feature="std")] #[inline] pub fn random<T: Rand>() -> T { thread_rng().gen() } /// DEPRECATED: use `seq::sample_iter` instead. /// /// Randomly sample up to `amount` elements from a finite iterator. /// The order of elements in the sample is not random. /// /// # Example /// /// ```rust /// use rand::{thread_rng, sample}; /// /// let mut rng = thread_rng(); /// let sample = sample(&mut rng, 1..100, 5); /// println!("{:?}", sample); /// ``` #[cfg(feature="std")] #[inline(always)] #[deprecated(since="0.4.0", note="renamed to seq::sample_iter")] pub fn sample<T, I, R>(rng: &mut R, iterable: I, amount: usize) -> Vec<T> where I: IntoIterator<Item=T>, R: Rng, { // the legacy sample didn't care whether amount was met seq::sample_iter(rng, iterable, amount) .unwrap_or_else(|e| e) } #[cfg(test)] mod test { use super::{Rng, thread_rng, random, SeedableRng, StdRng, weak_rng}; use std::iter::repeat; pub struct MyRng<R> { inner: R } impl<R: Rng> Rng for MyRng<R> { fn next_u32(&mut self) -> u32 { fn next<T: Rng>(t: &mut T) -> u32 { t.next_u32() } next(&mut self.inner) } } pub fn rng() -> MyRng<::ThreadRng> { MyRng { inner: ::thread_rng() } } struct ConstRng { i: u64 } impl Rng for ConstRng { fn next_u32(&mut self) -> u32 { self.i as u32 } fn next_u64(&mut self) -> u64 { self.i } // no fill_bytes on purpose } pub fn iter_eq<I, J>(i: I, j: J) -> bool where I: IntoIterator, J: IntoIterator<Item=I::Item>, I::Item: Eq { // make sure the iterators have equal length let mut i = i.into_iter(); let mut j = j.into_iter(); loop { match (i.next(), j.next()) { (Some(ref ei), Some(ref ej)) if ei == ej => { } (None, None) => return true, _ => return false, } } } #[test] fn test_fill_bytes_default() { let mut r = ConstRng { i: 0x11_22_33_44_55_66_77_88 }; // check every remainder mod 8, both in small and big vectors. let lengths = [0, 1, 2, 3, 4, 5, 6, 7, 80, 81, 82, 83, 84, 85, 86, 87]; for &n in lengths.iter() { let mut v = repeat(0u8).take(n).collect::<Vec<_>>(); r.fill_bytes(&mut v); // use this to get nicer error messages. for (i, &byte) in v.iter().enumerate() { if byte == 0 { panic!("byte {} of {} is zero", i, n) } } } } #[test] fn test_gen_range() { let mut r = thread_rng(); for _ in 0..1000 { let a = r.gen_range(-3, 42); assert!(a >= -3 && a < 42); assert_eq!(r.gen_range(0, 1), 0); assert_eq!(r.gen_range(-12, -11), -12); } for _ in 0..1000 { let a = r.gen_range(10, 42); assert!(a >= 10 && a < 42); assert_eq!(r.gen_range(0, 1), 0); assert_eq!(r.gen_range(3_000_000, 3_000_001), 3_000_000); } } #[test] #[should_panic] fn test_gen_range_panic_int() { let mut r = thread_rng(); r.gen_range(5, -2); } #[test] #[should_panic] fn test_gen_range_panic_usize() { let mut r = thread_rng(); r.gen_range(5, 2); } #[test] fn test_gen_f64() { let mut r = thread_rng(); let a = r.gen::<f64>(); let b = r.gen::<f64>(); debug!("{:?}", (a, b)); } #[test] fn test_gen_weighted_bool() { let mut r = thread_rng(); assert_eq!(r.gen_weighted_bool(0), true); assert_eq!(r.gen_weighted_bool(1), true); } #[test] fn test_gen_ascii_str() { let mut r = thread_rng(); assert_eq!(r.gen_ascii_chars().take(0).count(), 0); assert_eq!(r.gen_ascii_chars().take(10).count(), 10); assert_eq!(r.gen_ascii_chars().take(16).count(), 16); } #[test] fn test_gen_vec() { let mut r = thread_rng(); assert_eq!(r.gen_iter::<u8>().take(0).count(), 0); assert_eq!(r.gen_iter::<u8>().take(10).count(), 10); assert_eq!(r.gen_iter::<f64>().take(16).count(), 16); } #[test] fn test_choose() { let mut r = thread_rng(); assert_eq!(r.choose(&[1, 1, 1]).map(|&x|x), Some(1)); let v: &[isize] = &[]; assert_eq!(r.choose(v), None); } #[test] fn test_shuffle() { let mut r = thread_rng(); let empty: &mut [isize] = &mut []; r.shuffle(empty); let mut one = [1]; r.shuffle(&mut one); let b: &[_] = &[1]; assert_eq!(one, b); let mut two = [1, 2]; r.shuffle(&mut two); assert!(two == [1, 2] || two == [2, 1]); let mut x = [1, 1, 1]; r.shuffle(&mut x); let b: &[_] = &[1, 1, 1]; assert_eq!(x, b); } #[test] fn test_thread_rng() { let mut r = thread_rng(); r.gen::<i32>(); let mut v = [1, 1, 1]; r.shuffle(&mut v); let b: &[_] = &[1, 1, 1]; assert_eq!(v, b); assert_eq!(r.gen_range(0, 1), 0); } #[test] fn test_rng_trait_object() { let mut rng = thread_rng(); { let mut r = &mut rng as &mut Rng; r.next_u32(); (&mut r).gen::<i32>(); let mut v = [1, 1, 1]; (&mut r).shuffle(&mut v); let b: &[_] = &[1, 1, 1]; assert_eq!(v, b); assert_eq!((&mut r).gen_range(0, 1), 0); } { let mut r = Box::new(rng) as Box<Rng>; r.next_u32(); r.gen::<i32>(); let mut v = [1, 1, 1]; r.shuffle(&mut v); let b: &[_] = &[1, 1, 1]; assert_eq!(v, b); assert_eq!(r.gen_range(0, 1), 0); } } #[test] fn test_random() { // not sure how to test this aside from just getting some values let _n : usize = random(); let _f : f32 = random(); let _o : Option<Option<i8>> = random(); let _many : ((), (usize, isize, Option<(u32, (bool,))>), (u8, i8, u16, i16, u32, i32, u64, i64), (f32, (f64, (f64,)))) = random(); } #[test] fn test_std_rng_seeded() { let s = thread_rng().gen_iter::<usize>().take(256).collect::<Vec<usize>>(); let mut ra: StdRng = SeedableRng::from_seed(&s[..]); let mut rb: StdRng = SeedableRng::from_seed(&s[..]); assert!(iter_eq(ra.gen_ascii_chars().take(100), rb.gen_ascii_chars().take(100))); } #[test] fn test_std_rng_reseed() { let s = thread_rng().gen_iter::<usize>().take(256).collect::<Vec<usize>>(); let mut r: StdRng = SeedableRng::from_seed(&s[..]); let string1 = r.gen_ascii_chars().take(100).collect::<String>(); r.reseed(&s); let string2 = r.gen_ascii_chars().take(100).collect::<String>(); assert_eq!(string1, string2); } #[test] fn test_weak_rng() { let s = weak_rng().gen_iter::<usize>().take(256).collect::<Vec<usize>>(); let mut ra: StdRng = SeedableRng::from_seed(&s[..]); let mut rb: StdRng = SeedableRng::from_seed(&s[..]); assert!(iter_eq(ra.gen_ascii_chars().take(100), rb.gen_ascii_chars().take(100))); } }